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Abstract

The R package indirect supports the elicitation of multivariate normal priors for gen-
eralised linear models from domain experts. The software can be applied to indirect
elicitation for a generalised linear model that is linear in the parameters. That is, the
linear predictor can admit interactions, polynomial functions of the covariates or other
choice of basis functions. The package is designed such that the facilitator executes func-
tions within the R console during the elicitation session to provide graphical and numerical
feedback at each design point. Various methodologies for eliciting fractiles (equivalently,
percentiles or quantiles) are supported. For example, experts may be asked to provide
central credible intervals that correspond to a certain probability. Or experts may be
allowed to vary the probability allocated to the central credible interval for each design
point. Additionally, a median may or may not be elicited. The package provides auto-
matic document generation that summarises the elicitation session for the participating
expert at the conclusion of the session.
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1. Introduction
The R package indirect is introduced to support the elicitation of multivariate normal priors
for generalised linear models. Key guidance for the general elicitation of subjective probabil-
ity distributions from domain experts is given by Garthwaite, Kadane, and O’Hagan (2005)
and O’Hagan, Buck, Daneshkhah, Eiser, Garthwaite, Jenkinson, Oakley, and Rakow (2006).
These references cover the importance of preparing and educating experts prior to an elici-
tation session, identify the need to clearly elucidate the targets of an elicitation session, and
compare the advantages and disadvantages of choices of elicitation protocols.
A subcategory of elicitation procedures focuses on targeting potentially observable quantities
that arise from a parametric model instead of targeting elicitation on the parameter directly.
This form of elicitation may be referred to as “indirect” elicitation (Winkler 1967). For
example, rather than eliciting a distribution for a binomial probability parameter directly, an
expert may instead be asked to consider hypothetical observations, which are then used to
infer a subjective probability distribution for the probability parameter.
An important application area of indirect elicitation is the prior elicitation for regression mod-
els (Low Choy, O’Leary, and Mengersen 2009). Generally, it is thought that indirect elicitation
is an easier task compared to an attempted direct assessment of multi-dimensional probabil-
ity distributions for the unknown parameters (Kadane, Dickey, Winkler, Smith, and Peters
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1980; O’Hagan et al. 2006). For binomial regression models, software is available from the
author (James, Low Choy, and Mengersen 2010). Low Choy, Murray, James, and Mengersen
(2010) describe an extension of this software that implements the Conditional Mean Prior
(CMP) approach of Bedrick, Christensen, and Johnson (1996) for binomial regression models
in a way that can apply to other generalised linear models (Low-Choy, James, Murray, and
Mengersen 2012). Garthwaite, Al-Awadhi, Elfadaly, and Jenkinson (2013) also use the CMP
approach to elicit multivariate normal priors for generalised linear models, which has associ-
ated software available for download (http://statistics.open.ac.uk/elicitation). This
approach elicits quantiles for the expected response of a generalised linear model. A drawback
is that no interactions among the covariates are allowed to influence the response. Elfadaly
and Garthwaite (2015) discuss an extension of the software to gamma regression and the
normal linear model. At this time, no R packages other than indirect exist for indirect
elicitation of generalised linear models.
The scope of the package indirect is focused on supporting the elicitation session, recording
of results and reporting summaries for indirect elicitation of multivariate normal priors for
generalised linear models. All functions in package indirect are implemented using the R
system for statistical computing R Core Team (2017). R is available from the comprehensive
R archive network (CRAN, http://CRAN.R-project.org/), which is distributed under the
terms of the GNU General Public License, either Version 2 (GPL-2) or Version 3 (GPL-3).
The indirect package is available from CRAN under the GPL-3 license (Hosack 2018).

2. Generalised linear model
The generalised linear model (GLM) has three components (McCullagh and Nelder 1989):

1. An observation model, p(yi|θi, ξ), for data yi conditional on the expected response
E [yi] = θi at each design point, i = 1, . . . , n. The observation model is chosen from the
exponential family and may include additional parameters ξ.

2. The linear predictor,
ηi = x⊤

i β, (1)
where the p × 1 vector xi may encode continuous or categorical covariates at the ith

design point, and β is the p × 1 vector of unknown parameters.

3. An invertible link function, g(θi) = ηi, that models the relationship between the ex-
pected response and the linear predictor.

3. Independent conditional mean priors
A proper prior for the unknown parameters, p(β) is sought, which can take various forms.
However, direct elicitation of the parameters β would be exceedingly difficult for experts. An
alternative approach indirectly elicits the prior p(β) given subjective probability distributions
elicited on an interpretable scale. The mean response θi usually is accessible to experts in
terms of units and definition. For example, the response θi may be a percentage, a probability,
an abundance, or a density given known covariates x⊤

i . The task is then to elicit indepen-
dent conditional mean priors for the mean response θi at each design point or scenario x⊤

i ,

http://statistics.open.ac.uk/elicitation
http://CRAN.R-project.org/
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i = 1, . . . , n. In particular, specifying a normal prior for β induces a class of independent
conditional mean priors within the generalised linear model framework (Bedrick et al. 1996).
In many statistical applications a normal prior is specified (Garthwaite et al. 2013; Hosack,
Hayes, and Barry 2017), p(β) = N(µ, Σ), and this is the basic assumption used in package
indirect.

3.1. Specifying the design matrix

The design points (scenarios) x⊤
i for i = 1, . . . , n compose the rows of the n × p design matrix

X. The matrix X is assumed to have full column rank p ≤ n. Given a normal prior fixed for
β, the independence property for the conditional mean priors does not hold for all possible
choices of the design matrix X. Nevertheless, the independence assumption is often reasonable
if the design points are spread out in a certain sense (Bedrick et al. 1996). Optimal design,
such as using balanced designs, can be used to assist with this objective (Hosack et al. 2017).
In general, the design matrix may be arbitrary and include interactions or basis functions.
A suggested diagnostic for general X is the condition number of a rescaled design matrix Xs

where each column of X is scaled to unit length (Bedrick et al. 1996). This diagnostic is
implemented with function CNdiag in package indirect. A large condition number κ(Xs) may
suggest, but does not necessarily indicate, dependency in the design matrix (Belsley, Kuh,
and Welsch 2005). For the linear system

η = Xβ, (2)

Thisted (1988) notes that if X and η “are ‘good to t decimal places’, then the solution to
the linear system [β] may only be good to t − log10(κ(X)) decimal places”. Note that this
interpretation should here be applied on the scale of the linear predictor η.
For example, consider a balanced design that specifies one design point to each of three
categorical variables. This produces a low condition number.

R> X <- matrix(c(rep(1, 3), c(0, 1, 0), c(0, 0, 1)), nrow = 3,
+ dimnames = list(designPt = 1:3,paste0("covar", 1:3)))
R> X

designPt covar1 covar2 covar3
1 1 0 0
2 1 1 0
3 1 0 1

R> indirect::CNdiag(X)

[1] 4.294698

The above example is also D-optimal if the second and third covariates are instead continuous.
Contrast the above result with a suboptimal design, where the second column (covariate) of
the design matrix, now continuous, has been adjusted so that the second and third design
points (i.e., the second and third rows of X) are very close to each other in the design space.
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R> X <- matrix(c(rep(1, 3), c(0, 0.1, 0.9), c(0, 0, 1)), nrow = 3,
+ dimnames = list(designPt = 1:3, paste0("covar", 1:3)))
R> X

designPt covar1 covar2 covar3
1 1 0.0 0
2 1 0.1 0
3 1 0.9 1

R> indirect::CNdiag(X)

[1] 34.40988

The condition number diagnostic has increased. The relatively high condition number indi-
cates that the design points may not be sufficiently spread out in the latter example.

3.2. Eliciting independent conditional mean priors

Conditional on a given scenario described by the design point x⊤
i , the elicitation exercise

seeks to elicit from the expert a subjective probability distribution for the expected response
θi. Again the elicitation target θi typically is chosen to represent an interpretable quantity
to an expert and is so defined on a scale familiar to the expert, e.g., in units of proportion,
probability, abundance or density (Hosack et al. 2017). Generally, the advice for efficient
elicitation of a subjective probability distribution supports the elicitation of fractiles (equiv-
alently, quantiles or percentiles) from experts instead of most likely estimates or moments
such as means and variances (Garthwaite et al. 2005; O’Hagan et al. 2006). Garthwaite et al.
(2013) elicits fractiles from experts in a conditional mean prior approach. Fractiles are also
the elicited quantities for the elicitation target θi in package indirect.
For an arbitrary distribution function F (t), the qth fractile is defined as f = F −1(q). At
each scenario, a finite set of K fractiles is elicited from the expert1. Form the vector f =
[f1, . . . , fK ]⊤ with associated probabilities q = [q1, . . . , qK ]⊤, where qk = F (fk) for k =
1, . . . , K.2 These fractiles are used to bound K + 1 bins, Bk, k = 1, . . . , K + 1, where each
Bk is a real interval and Lebesgue measurable. The bins have bounds (−∞, f1] for B1,
bounds (fk−1, fk] for 1 < k ≤ K, and bounds (fK , ∞) for k = K + 1. The collection of bins
{Bk, k = 1, . . . , K + 1} forms a discrete set. The elicited distribution Pe is approximated by
assigning probability p1 = q1 to bin B1, probability pk = qk − qk−1 to Bk for 1 < k ≤ K
and probability pK+1 = 1 − qK to bin BK+1. The elicited distribution is thus essentially
approximated by a histogram, with the bins defined by the support of the target distribution
and the bounds of the elicited credible intervals.
The goal is to derive a normal prior for the unknown coefficients β. A normal distribution is
therefore elicited on the linear predictor scale. This process begins by transforming the frac-
tiles f through the monotonic link function g(·). For a given normal distribution Ps(ηi) with

1Typically K is a small number. Many strategies for choosing the set of fractiles to elicit have been proposed
in the literature. Several of these approaches are supported by package indirect; further discussion is postponed
until Section 3.3. For the moment, assume that a set of K fractiles have been elicited.

2The dependence of the fractiles f and associated probabilities q on the ith design point is suppressed here
to simplify notation.
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mean mi and variance vi, an approximation to the elicited probability intervals is constructed.
This normal distribution assigns probability ρ1 =

∫ g(f1)
−∞ N(t|mi, vi)dt to B1, probability

ρk =
∫ g(fk)

g(fk−1) N(t|mi, vi)dt to Bk for 1 < k ≤ K and probability ρK+1 =
∫ ∞

g(fK) N(t|mi, vi)dt
to BK+1.
Normal distributions have been fitted to elicited credible intervals using various techniques
(O’Hagan et al. 2006). An optimisation of the parameters mi and vi requires the specifica-
tion of an objective function. One possibility is least squares (O’Hagan et al. 2006), which
corresponds to choosing mi and vi such that the sum of squares

K+1∑
k

(pk − ρk)2 (3)

is minimised3. This objective function is supported by indirect.
Another possibility is to minimise the Kullback-Leibler divergence from the parametric sub-
jective probability distribution Ps to the unknown elicited distribution Pe, which is described
only by the raw elicited fractiles (Hosack et al. 2017). This approach seeks to minimise the
loss from reporting Ps if Pe is true under a logarithmic utility function. The objective function
is given by a discretised approximation to the Kullback–Leibler divergence,

KL(Pe : Ps) =
∫

log dPe

dPs
dPe ≈

K+1∑
k

log
(

pk

ρk

)
pk. (4)

The discretised approximation generally results in a loss of information (Kullback 1959).
Subject to regularity conditions, the information loss can be reduced to an arbitrarily small
amount by further partitioning (Kale 1964), that is, increasing the number of elicited fractiles
K. This approximate Kullback-Leibler divergence objective function was implemented by
Hosack et al. (2017) and is also supported by indirect.

3.3. Which fractiles to elicit?

In practice, only a small number of fractiles are pragmatic to elicit. The following strategies
are supported:

• Any arbitrary central credible interval, which may either be preset by the facilitator or
chosen by the expert. The probability associated with the central credible interval is
allowed to vary by design point.

• Any central credible interval and also the median. This allows the inclusion of the
median as a central point estimate, which is used for example by the method of bisection
(Garthwaite et al. 2005), see also Hosack et al. (2017) for an example using indirect
elicitation.

The latter method elicits more data than free parameters. O’Hagan et al. (2006) call this
process “overfitting”, and argues that overfitting allows the expert to more critically assess an
approximating parametric distribution. The elicited fractiles f are a step towards this goal,
and may well be adjusted several times until the expert judges the distribution Ps(θ), which

3The dependence of ρk on mi and vi is suppressed to simplify notation.
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is the distribution Ps(η) transformed by the inverse link function g−1(·), to be an accept-
able representation of their belief. Always remember that the subjective probability
distribution Ps, which is a normal distribution on the linear predictor scale de-
termined by the invertible link function g(·), is ultimately the elicited “data”. The
package indirect provides both graphical and numerical feedback to the expert to facilitate
this process of constructing an acceptable subjective probability distribution (see Section 4
for illustrations).

3.4. The induced prior

The independent conditional mean prior is normally distributed on the linear predictor scale,
p(η) = N(η|m, V ), with location vector m = [m1, . . . , mN ]⊤ and diagonal covariance matrix
V = diag[v1, . . . , vN ]. Conditional on the elicited data and a design matrix X of full column
rank, the probability distribution of η is given by,

n∏
i=1

p (ηi|mi, vi) =
n∏

i=1
p

(
x⊤

i β
∣∣∣ mi, vi

)
∝ exp

{
−1

2

n∑
i=1

v−1
i (x⊤

i β − mi)2
}

= exp
{

−1
2Tr

[
V −1(Xβ − m)(Xβ − m)⊤

]}
= exp

{
−1

2(Xβ − m)⊤V −1(Xβ − m)
}

, (5)

which is proportional to the exponential of a quadratic form in β.
The distribution for the unknown β conditional on m and V is proportional to the multivariate
normal distribution,

p(β|m, V ) ∝ exp
{

−1
2

[
β⊤X⊤V −1Xβ − 2m⊤V −1Xβ

]}
= exp

{
−1

2 (β − µ)⊤ Σ−1 (β − µ) + 1
2 X⊤V −1m

(
X⊤V −1X

)−1
m⊤V −1X

}
.

Given the assumptions of a normally distributed independent conditional mean prior, the
induced normal prior on the unknown coefficients of the generalised linear model is given by,

p(β) = N(β|µ, Σ) (6)

where µ = (X⊤V −1X)−1X⊤V −1m and Σ = (X⊤V −1X)−1 (Bedrick et al. 1996; Hosack et al.
2017). Given the proper prior p(β), the Bayesian update

p(β|y1, y2, . . . , yL) ∝ p(yL|y1, . . . , yL−1, β)p(yL−1|y1, . . . , yL−2, β) . . . p(y1|β)p(β), (7)

can now be obtained for future empirical observations yl, l = 1, . . . , L.

4. Illustrative example
There are 3 categories of functions in package indirect:
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1. Elicitation functions that do the following:

• specify the problem structure, for example, the design points and link function,
and

• assimilate expert statements in the form of fractiles, percentiles or quantiles (note
that all of these terms are equivalent) into this problem structure.

2. Fitting functions that map expert statements into models of the expert opinion; many
of these are helper functions that typically do not to be accessed by the user.

3. Plotting functions that provide graphical and numerical feedback to expert(s) during
the course of the elicitation session.

An example illustration is given here. The demonstration creates an artificial expert that
understands the system perfectly. That is, the expert believes in the true model and is able
to specify the distribution of β, independent design points X and the correct link function.
Obviously this will not happen in nature and this example is intended to simply illustrate the
proof of concept.

R> set.seed(100)
R> # number of covariates
R> p <- 5
R> # mean beta
R> mu <- rnorm(p)
R> # simulate covariance matrix from inverse Wishart
R> # diagonal scale matrix and p + 5 d.f. nu
R> alpha <- MASS::mvrnorm(p + 5, mu = rep(0, p), Sigma = diag(p)*50)
R> initial.icov <- t(alpha[1, , drop = FALSE])%*%alpha[1, , drop = FALSE]
R> for (i in 2:ncol(alpha)) {
+ initial.icov <- initial.icov +
+ + t(alpha[i, , drop = FALSE])%*%alpha[i, , drop = FALSE]
+ }
R> Sigma <- chol2inv(chol(initial.icov))
R> # Design with independence priors:
R> # the following choice of design matrix produces
R> # independent conditional mean priors.
R> # Of course, in a real elicitation session the prior
R> # for beta is unknown and so this example is only for illustration.
R> # This implements an Independent Conditional Mean prior as
R> # defined by Bedrick et al. (1996), p. 1458.
R> P <- diag(p) # identity matrix used (could use any orthogonal transformation)
R> X <- P%*%solve(t(chol(Sigma)))
R> D <- diag(1/rnorm(p, -X%*%mu, 0.5)) # arbitrary diagonal matrix
R> X <- round(D%*%X, digits = 6)
R> rownames(X) <- paste("DesignPt", 1:nrow(X))
R> colnames(X) <- paste("Covariate", 1:ncol(X))
R> X
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Covariate 1 Covariate 2 Covariate 3 Covariate 4 Covariate 5
DesignPt 1 0.582579 0.000000 0.000000 0.000000 0.000000
DesignPt 2 -1.459825 -7.083247 0.000000 0.000000 0.000000
DesignPt 3 3.633226 1.865657 -2.552306 0.000000 0.000000
DesignPt 4 0.551245 -0.225478 -0.216412 -0.837665 0.000000
DesignPt 5 3.520089 -1.759519 2.083022 0.801938 2.798532

R> # elicited moments and quartiles
R> g.m <- X%*%mu
R> g.V <- X%*%Sigma%*%t(X)
R> g.theta.median <- qnorm(0.5, g.m, sqrt(diag(g.V)))
R> g.theta.lower <- qnorm(0.25, g.m, sqrt(diag(g.V)))
R> g.theta.upper <- qnorm(0.75, g.m, sqrt(diag(g.V)))
R> # The "perfect" elicitations are stored in the following matrix
R> # perfect expert has cloglog link function
R> perfect.elicitations <- 1 - exp(-exp(cbind(g.theta.lower,
+ g.theta.median, g.theta.upper)))
R> colnames(perfect.elicitations) <- c("lower", "median", "upper")
R> perfect.elicitations

lower median upper
DesignPt 1 0.2457165 0.5259040 0.8612915
DesignPt 2 0.3151375 0.5595308 0.8306763
DesignPt 3 0.1736253 0.2228651 0.2834920
DesignPt 4 0.2918991 0.2996736 0.3076072
DesignPt 5 0.2331577 0.2772015 0.3276358

In the above, the elicitations are now recorded in the object perfect.elicitations. Of
course, this is an artificial situation. In a real session, this elicited information could only
be obtained by an exchange between the facilitator and the expert. The package indirect
facilitates this exchange with a combination of iterative graphical and numerical feedback.
Prior to the start of the elicitation session, it is a good idea to write out a R script that will
serve as a reproducible transcript of the session. The elicited data and comments contributed
by the expert will then be edited into this R script. There are also functions to store elicitation
R objects created during the R session and, at the end of the session, share a summary of the
session for the expert’s own records. In this way, the facilitator is cautiously using multiple
mechanisms to document the valuable data created during the elicitation session.
The R transcript begins with a creation of an empty elicitation record using the function
designLink. There is the opportunity to add any introductory comments that may pertain
to the session. The facilitator will later have the option of producing a session report. This
report will be processed using Sweave. The comments will be printed with a call to Sexpr, and
so it is recommended that the comments only use ASCII text and avoid special characters.

R> # Initialise list with elicitation session information.
R> # Here design is the same as X but not usually the case, that is,
R> # the covariates presented to the expert may differ from
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R> # the model design due to transformations, contrasts and coding.
R> # Setting CI.prob = 1/2 specifies that 0.5 probability is allocated to the
R> # central credible interval; the upper and lower bounds
R> # of the central CI are then the upper and lower quartiles.
R> Z <- indirect::designLink(design = X, link = "cloglog",
+ target = "Target", CI.prob = 1/2,
+ intro.comments = "This is a record of the elicitation session.",
+ expertID = "Expert", facilitator = "Facilitator",
+ rapporteur = "none")
R> Z

$design
Covariate 1 Covariate 2 Covariate 3 Covariate 4 Covariate 5

DesignPt 1 0.582579 0.000000 0.000000 0.000000 0.000000
DesignPt 2 -1.459825 -7.083247 0.000000 0.000000 0.000000
DesignPt 3 3.633226 1.865657 -2.552306 0.000000 0.000000
DesignPt 4 0.551245 -0.225478 -0.216412 -0.837665 0.000000
DesignPt 5 3.520089 -1.759519 2.083022 0.801938 2.798532

$theta
lower median upper CI_prob

[1,] NA NA NA 0.5
[2,] NA NA NA 0.5
[3,] NA NA NA 0.5
[4,] NA NA NA 0.5
[5,] NA NA NA 0.5

$link
[1] "cloglog"

$target
[1] "Target"

$expertID
[1] "Expert"

$facilitator
[1] "Facilitator"

$rapporteur
[1] "none"

$intro.comments
[1] "This is a record of the elicitation session."

$comments
[1] " " " " " " " " " "
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$fit.method
[1] "KL"

Now have a look at a plot for the first design point without any elicitations included. The
plot will go to the current device, which may require resizing. Usually a plot with the default
dimensions (7 inches for both width and height) is sufficient4.

R> # elicitations
R> # design point 1
R> indirect::plotDesignPoint(Z, design.pt = 1)
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An example elicitation at the first design point is presented. This example applies the ap-
proach of Hosack et al. (2017), which uses the method of bisection (Garthwaite et al. 2005)
followed by graphical and numerical feedback. This process iterates until the expert ac-
cepts the parametric distribution as an adequate representation of their beliefs. The process
begins by restricting the support of the plot to (0, 1), which is appropriate given the com-
plementary log log link, and eliciting the median, which was previously stored in the matrix

4RStudio is a good (free) IDE that supports convenient switching among script, R console and the graphical
device (https://www.rstudio.com/products/rstudio/download/).

https://www.rstudio.com/products/rstudio/download/
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perfect.elicitations above. The median is the value that the expert believes gives a 50/50
chance (equivalently, a 1/2 chance, equal odds or probability 0.5) of being above or below the
target θi.

R> # Example elicited fractiles are stored in perfect.elicitations
R> # In a real application, median would be entered as a numeric scalar that was
R> # contributed by the expert.
R> # CI.prob was initially set by designLink
R> Z <- indirect::elicitPt(Z, design.pt = 1,
+ lower.CI.bound = NA,
+ median = perfect.elicitations[1, "median"],
+ upper.CI.bound = NA,
+ CI.prob = NULL)
R> indirect::plotDesignPoint(Z, design.pt = 1,
+ elicited.fractiles = TRUE, theta.bounds = c(0, 1))
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Next, the target θi is assumed to be below the median. Given this assumption, the expert is
asked to provide the value that gives a 50/50 chance that the target is above or below; this
value is equivalent to the lower quartile, f1/4.
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R> Z <- indirect::elicitPt(Z, design.pt = 1,
+ lower.CI.bound = perfect.elicitations[1, "lower"],
+ median = perfect.elicitations[1, "median"],
+ upper.CI.bound = NA)
R> indirect::plotDesignPoint(Z, design.pt = 1,
+ elicited.fractiles = TRUE, theta.bounds = c(0, 1))
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Next, the target θi is assumed to be above the median. Given this assumption, the expert is
asked to provide the value that gives a 50/50 chance that the target is above or below; this
value is equivalent to the upper quartile, f3/4.

R> Z <- indirect::elicitPt(Z, design.pt = 1,
+ lower.CI.bound = perfect.elicitations[1, "lower"],
+ median = perfect.elicitations[1, "median"],
+ upper.CI.bound = perfect.elicitations[1, "upper"],
+ comment = "No major comments.")
R> indirect::plotDesignPoint(Z, design.pt = 1,
+ elicited.fractiles = TRUE, theta.bounds = c(0, 1))
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These raw elicited fractiles are then compared to the fitted conditional normal that minimises
the Kullback–Leibler divergence with partitioning based on the elicited fractiles. The approx-
imation is exact in this example because the expert believes in the true model and reports
their beliefs accurately. The subjective probability density function of the conditional normal
is also plotted.

R> indirect::plotDesignPoint(Z, design.pt = 1,
+ elicited.fractiles = TRUE, theta.bounds = c(0, 1),
+ fitted.fractiles = TRUE, fitted.curve = TRUE)
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Typically the parametric distribution matches the original elicited fractiles f inexactly. In
the overfitting process (O’Hagan et al. 2006), the fractiles f are then iteratively adjusted until
the fitted distribution and fractiles are acceptable to the expert as an adequate representation
of their beliefs.

The model is then used to predict out to the extreme deciles, that is, f1/10 and f9/10. This
provides another check in the overfitting process.

R> indirect::plotDesignPoint(Z, design.pt = 1,
+ elicited.fractiles = TRUE, theta.bounds = c(0, 1),
+ fitted.fractiles = c(1/10, 1/4, 1/2, 3/4, 9/10), fitted.curve = TRUE)
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Sometimes the estimated (fitted) cumulative probabilities for different values of the target θi

are of interest. For example, the cumulative probabilities Ps(θi = 1/3) and Ps(θi = 1/2) can
be estimated using the estimated.probs argument as follows.

R> indirect::plotDesignPoint(Z, design.pt = 1,
+ elicited.fractiles = TRUE, theta.bounds = c(0, 1),
+ fitted.fractiles = c(1/10, 1/4, 1/2, 3/4, 9/10), fitted.curve = TRUE,
+ estimated.probs = c(1/3, 0.5))

P(x <= 0.333333333333333) P(x <= 0.5)
0.3362133 0.4795661
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The estimated probabilities are printed to the R console. The raw fractiles may require
further adjustment at this point. Once the fitted subjective probability distribution is deemed
acceptable by the expert then the elicitation proceeds to the next design point.
At the second design point, say the expert suddenly wished to switch to an alternative method
with reference to tertiles, f1/3 and lower f2/3, rather than quartiles. Further, the expert wished
to contribute only the upper and lower tertiles without explicit reference to the median. With
this approach, the expert will contribute two fractiles that divide the support of the target
into intervals of equal probability or odds (each probability interval above, below, and between
the elicited fractiles will have probability 1/3). Suppose that these changes were accepted by
the elicitation protocol. The changes can be accommodated in the following way.

R> # Pefect elicitations now moving to tertiles for the second design point
R> g.tertiles.d2 <- qnorm(c(1/3, 2/3), g.m[2], sqrt(g.V[2, 2]))
R> # inverse link function
R> theta.tertiles.d2 <- 1 - exp(-exp(c(g.tertiles.d2)))
R> # tertiles only elicited without median
R> Z <- indirect::elicitPt(Z, design.pt = 2, CI.prob = 1/3,
+ lower.CI.bound = theta.tertiles.d2[1],
+ upper.CI.bound = theta.tertiles.d2[2],
+ comment = "Switched to tertile method without median.")
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R> indirect::plotDesignPoint(Z, design.pt = 2,
+ elicited.fractiles = TRUE, theta.bounds = c(0, 1),
+ fitted.fractiles = c(1/10, 1/3, 1/2, 2/3, 9/10), fitted.curve = TRUE)
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Only the current design point has the central credible interval set to probability 1/3.

R> Z$theta

lower median upper CI_prob
[1,] 0.2457165 0.525904 0.8612915 0.5000000
[2,] 0.3937816 NA 0.7389746 0.3333333
[3,] NA NA NA 0.5000000
[4,] NA NA NA 0.5000000
[5,] NA NA NA 0.5000000

Once this subjective probability distribution is deemed acceptable by the expert then the
elicitation proceeds to the next design point, and so on for each design point x⊤

i , i = 1, . . . , n.

R> # All remaining elicitations are entered into the record
R> # for this artificial elicitation example
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R> Z$theta[3:nrow(perfect.elicitations), 1:3] <-
+ perfect.elicitations[3:nrow(perfect.elicitations), ]

The elicited prior for this particular model can then be obtained with the function muSigma.

R> prior <- indirect::muSigma(Z, X = Z$design)
R> prior

$mu
[,1]

Covariate 1 -0.50219235
Covariate 2 0.13153117
Covariate 3 -0.07891709
Covariate 4 0.88678481
Covariate 5 0.11697127

$Sigma
Covariate 1 Covariate 2 Covariate 3 Covariate 4 Covariate 5

Covariate 1 6.135611 -1.2645215 7.809760 2.3603956 -15.002022
Covariate 2 -1.264521 0.2867828 -1.590426 -0.4984535 3.097499
Covariate 3 7.809760 -1.5904260 9.981010 2.9888879 -19.108948
Covariate 4 2.360396 -0.4984535 2.988888 0.9184058 -5.770263
Covariate 5 -15.002022 3.0974987 -19.108948 -5.7702627 36.705706

$log.like
[,1]

[1,] 0.05858989

R> # compare with original prior parameters defined above
R> all.equal(as.numeric(prior$mu), mu)

[1] TRUE

R> all.equal(prior$Sigma, Sigma, check.attributes = FALSE) # a small number

[1] "Mean relative difference: 2.452039e-07"

Alternative models may also be considered so long as the information coded in the model
matrix X matches with what was presented to the expert via the argument design in the
function designLink.
This would conclude the elicitation session for the perfect expert, which recovers the correct
prior. In reality, such a situation is unobtainable. An example is given where the perfect
expert elicitation is jittered, so that it is no longer exactly correct. By setting theta.bounds
= NULL, the plot bounds are allowed to automatically adjust to the credible interval of the
elicited subjective probability distribution. The bounds of the credible interval are specified
by cumul.prob.bounds, with default interval given by (0.05, 0.95).
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R> # perfect elicitions for design point 5
R> perfect.elicitations[5, ]

lower median upper
0.2331577 0.2772015 0.3276358

R> # jittered elicitations
R> d5.jittered <- c(0.2, 0.3, 0.35)
R> # plot jittered elicitation
R> Z <- indirect::elicitPt(Z, design.pt = 5,
+ lower.CI.bound = d5.jittered[1],
+ median = d5.jittered[2],
+ upper.CI.bound = d5.jittered[3],
+ comment = "Jittered elicitation.")
R> indirect::plotDesignPoint(Z, design.pt = 5,
+ elicited.fractiles = TRUE, theta.bounds = NULL,
+ cumul.prob.bounds = c(0.05, 0.95),
+ fitted.fractiles = c(1/10, 1/4, 1/2, 3/4, 9/10),
+ fitted.curve = TRUE
+ )
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To conclude the session, the facilitator should ask the expert if there are further questions.
After confirmation with the expert, the record can be saved using the function saveRecord.
This will save the record as a RDS object using the base R function saveRDS.

R> # Not run:
R> # for this example, create a temporary directory to store record
R> tmp.rds <- tempfile(pattern = "record", fileext =".rds")
R> # save record to this directory
R> indirect::saveRecord(Z,
+ conclusion.comments = "This concludes the elicitation record.",
+ file = tmp.rds)

A summary record of the elicitation session can be shared with the expert by function
makeSweave that automatically generates a pdf document in the current working directory.
The makeSweave function sources the elicitation record from the saved rds file and creates
a .Rnw file. This latter file may be processed by the utils::Sweave and tools::texi2pdf
functions to create a .pdf document.

R> # Not run:
R> tmpReport <- tempfile(pattern = "SessionSummary")
R> indirect::makeSweave(filename.rds = tmp.rds,
+ reportname = tmpReport,
+ title = "Elicitation session record",
+ contact.details = "contact at email address",
+ fitted.fractiles = c(1/10, 1/4, 1/2, 3/4, 9/10))
R> # change working directory to where the record RDS object was stored
R> setwd(tempdir())
R> utils::Sweave(paste0(tmpReport, ".Rnw"))
R> tools::texi2pdf(paste0(tmpReport, ".tex"))

The function makeSweave saves pdf files of all figures and the summary report document into
the current working directory.

5. Summary
This introduction to the R package indirect (Hosack 2018) describes the motivation and
methods of the functionality provided to support the indirect prior elicitation of multivari-
ate normal priors for generalised linear models. Several approaches to elicitation of central
credible intervals within a generalised linear model framework are supported, including ver-
sions of the approach of Hosack et al. (2017). The goal is to elicit subjective probabilities
conditional on different combinations of covariate values at specified design points, or “sce-
narios”. These subjective probabilities subsequently induce a multivariate normal prior for a
generalised linear model. Alternative choices of design matrix may be explored outside of the
elicitation session without violating the elicitation protocol, as long as the alternative models
agree with the information provided to the expert during the session for each design point
and the link function is unaltered. Currently the identity, logit, complementary log log, and
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log link functions are supported. The basic options for this indirect elictation approach are
described here with examples of code usage.
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